Making a connection: direct binding between keratin intermediate filaments and desmosomal proteins

نویسندگان

  • P D Kouklis
  • E Hutton
  • E Fuchs
چکیده

In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between desmoplakin and intermediate filaments have not been successful. In this report, we explore the biochemical nature of the connections between keratin filaments and desmosomes in epidermal keratinocytes. We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6. We have engineered and purified recombinant K5 head and DPI tail, and we demonstrate direct interaction in vitro by solution-binding assays and by ligand blot assays. This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types. We have identified an 18-amino acid residue stretch in the K5 head that is conserved only among type II epidermal keratins and that appears to play some role in DPI tail binding. This finding might have important implications for understanding a recent point mutation found within this binding site in a family with a blistering skin disorder.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distribution of desmosomal proteins in F9 embryonal carcinoma cells and epithelial cell derivatives.

In diverse epithelia, cytoskeletal keratin intermediate filaments (IFs) associated with the cytoplasmic face of intercellular junctional desmosomes. The processes underlying desmosome formation and keratin IF interactions remain unclear. We have examined F9 embryonal carcinoma (EC) cell differentiation as a model for embryonic development of epithelial surface desmosomes. As determined by immun...

متن کامل

Lis1 is essential for cortical microtubule organization and desmosome stability in the epidermis

Desmosomes are cell-cell adhesion structures that integrate cytoskeletal networks. In addition to binding intermediate filaments, the desmosomal protein desmoplakin (DP) regulates microtubule reorganization in the epidermis. In this paper, we identify a specific subset of centrosomal proteins that are recruited to the cell cortex by DP upon epidermal differentiation. These include Lis1 and Ndel...

متن کامل

Defining the Interactions Between Intermediate Filaments and Desmosomes

Desmoplakin (DP), plakoglobin (PG), and plakophilin 1 (PP1) are desmosomal components lacking a transmembrane domain, thus making them candidate linker proteins for connecting intermediate filaments and desmosomes. Using deletion and site-directed mutagenesis, we show that remarkably, removal of approximately 1% of DP's sequence obliterates its ability to associate with desmosomes. Conversely, ...

متن کامل

Desmoplakin regulates desmosome hyperadhesion

The skin is subjected to continuous physical stress. Keratinocytes resist mechanical stress by tethering the tension-bearing keratin intermediate filament cytoskeleton to sites of intercellular contact known as desmosomes (Garrod and Chidgey, 2008; Green and Simpson, 2007). The plakin protein desmoplakin (DP) is an obligate desmosomal constituent necessary for keratin anchorage at cell-cell con...

متن کامل

Keratin incorporation into intermediate filament networks is a rapid process

The properties of keratin-containing intermediate filament (IF) networks in vivo were studied following the microinjection of biotinylated keratin. Keratin-IFs were biotinylated, disassembled, and separated into type I and type II proteins by ion exchange chromatography. Recombination of these derivatized type I and type II keratins resulted in the formation of 10-nm diameter IF. The type I ker...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 127  شماره 

صفحات  -

تاریخ انتشار 1994